Tag Archive for 'DTC'

Review of the Lumigenix “Comprehensive” personal genome service

This is the first of a new format on Genomes Unzipped: as we acquire tests from more companies, or get data from others who have been tested, we’ll post reviews of those tests here. The aim of this series is to help potential genetic testing customers to make an informed decision about the products on the market. We’re still tweaking the format, so if you have any suggestions regarding additional analyses or areas that should be covered in more detail, let us know in the comments.

Overview

Lumigenix is a relative newcomer to the personal genomics scene: the Australian-based company launched back in March this year, offering a SNP chip-based genotyping service similar in concept to those provided by 23andMe, deCODEme and Navigenics.

The company kindly provided Genomes Unzipped with 12 free “Comprehensive” kits, which provide genotypes at over 700,000 positions in the genome, to enable us to review their product. We note that the company offers several other services, including a lower-priced “Introductory” test that covers fewer SNPs, and whole-genome sequencing for the more ambitious personal genomics enthusiast. This review should be regarded as entirely specific to the Comprehensive test.
Continue reading ‘Review of the Lumigenix “Comprehensive” personal genome service’

A case study in personal genomics

I have no strong family history of any disease, despite having 7 blood aunts and uncles and countless cousins. So when I sent my spit off to 23andMe at the start of the Genomes Unzipped project, I was expecting something very similar to Caroline’s experience: a 5% increase in risk here, a 2% decrease in risk there, nothing that would really tell my anything about my health.

However, this was not my experience. Along with a pretty interesting Y haplogroup, I also had three unexpected and potentially worrying health results. I am a cystic fibrosis carrier, a hemochromatosis compound heterozygote, and have a strongly elevated risk of age-related macular degeneration. This cocktail of genetic disease certainly was not what I came to the test expecting!

After some thinking, I decided to take my test results to my GP, and see if there was any advice or testing he would recommend. In the end, my GP referred me to a clinical geneticist, which started a cascade of appointments which in turn led to a number of important changes in how I treat my own health.

What was most interesting is how the whole experience got me thinking about my health as something I am in charge of. I have since made a number of important life-style changes, some of them directly related to my genotyping results, some more generally to improve my overall health.

The point of this post is just to go through some of the experiences, what I have learned about specific conditions, and what changes I have made to my life since. In some sense, I feel like my experience is a case-study in what good outcomes can come from personal genomics, both for specific conditions, and more generally for how genetic data can change your own approach to your health.

Continue reading ‘A case study in personal genomics’

Cracking non-coding variation, carrying cystic fibrosis, and more Alzheimer’s prediction

Daniel and Luke attended the Biology of Genomes conference at Cold Spring Harbour last week. The talks did not have a huge amount of direct relevance to personal genomics, but did show some real quantum leaps in understanding the function of the non-coding DNA that makes up most of our genomes. Understanding mutations that lie outside of coding DNA is largely a prerequisite for transitioning to whole-genome sequencing for personal genomics, as most of the variation that drives genetic differences between people appears to lie there. As we’ve said before, one of the powerful aspects of sequencing is that it allows you to get at the aspects of your DNA that are unique to you, but that is only really useful (and a lot cooler) if we know what this unique variation does. Biology of Genomes showed us that that dream is closer now than it has ever been before.

For a (somewhat technical) account of some of the conference talks, you can read Luke’s blog posts over at Genetic Inference (along with a signficiantly less technical post about chipmunks and wood cabins), and Matthew Herper has a lay-friendly post on his Forbes blog. As has become standard, Twitter was an important way of disseminating knowledge live during talks, and Keith Bradnam and EpiExperts wrote about this aspect. [LJ]

Since GNZ started, Luke has actually been holding back writing about his many and varied genomics woes, and his resulting quest for bodily health, mostly for lack of time. However, one part of this has leaked out somewhat: he has recently given an interview to fellow blogger Elaine Westwick about being one of the two cystic fibrosis carriers in Genomes Unzipped. Read the interview at Elaine’s blog The Stuff of Life. [LJ]

On a similar subject to our recent post about calculating Alzheimer’s risk, over at Genomics Law Report Dan has written a detailed post about the regulatory challenges ahead for both direct-to-consumer and clinical tests for Alzheimer’s. [LJ]

My Genome Online – A Challenge To You

[Editor’s Note: This guest post is contributed by Blaine Bettinger. Blaine is the author of The Genetic Genealogist, a blog that examines the intersection of genetics and ancestry, and a patent attorney at Bond, Schoeneck & King in Syracuse, NY.]

As you may have heard, I recently made my 23andMe and Family Tree DNA autosomal testing results available for download online at “mygenotype,” and dedicated the information to the public domain (if dedicating DNA sequence to the public domain is even possible – I’m currently doing some research in this area and expect to write more in the future). [Editor's Note: see additional comments on personal genomics data in the public domain at the end of this post.]

At “mygenotype” you can download the following:

My Family Tree DNA Results:

  1. Affymetrix Autosomal DNA Results (2010)
  2. Affymetrix X-Chromosome DNA Results (2010)
  3. Illumina Autosomal DNA Results (2011)
  4. Illumina X-Chromosome DNA Results (2011)

My 23andMe Results:

  1. V2 Results (2008)
  2. V3 Results (2010)
  3. Y-DNA Results (2010)
  4. mtDNA Results (2010)

You can also find my SNPedia Promethease reports:

In addition to my genome, Razib Khan of Gene Expression has a spreadsheet of approximately 48 other genomes that are available for download online.

A Challenge To YOU

Now that the information is out there, available to anyone who might be interested, it remains to be seen who might be interested in the information.

Continue reading ‘My Genome Online – A Challenge To You’

Last chance to submit comments to the FDA about DTC genetics

Today is the last day to submit comments to the FDA about the future of regulation of direct-to-consumer genetic testing, and, by extension, the future of personal genomics. I would strongly urge anyone reading this blog to submit a comment; the FDA needs to hear the full diversity of opinions and facts on this subject to make an informed decision.

Have you or your family taken a DTC genetic test, and can explain your experiences, either positive or negative? Are you a scientist working on human genetics and have thoughts about the scientific merits of the tests? Are you a clinician, and have insights into how individual’s having direct access to their own genetic information will effect your practice? Are you an ethicist, social scientist or public health professional with opinions about the rights of individuals to access their genetic data, or the impacts such access will have on society or public health? Write a hundred words or so and submit them to the FDA.

You can submit comments via this form; remember, today is the last day before comments close. You can see the comments that have already been submitted here.

For more coverage on this round of comments, see posts by Dan, Daniel and Razib. You may also like to reread our consensus statement about the FDA’s recent investigations.

At odds with disease risk estimates

It's all a game of Risk!

The first thing I did when I received my genotyping results from 23andMe was log on to their website and take a look at my estimated disease risks. For most people, these estimates are one of the primary reasons for buying a direct to consumer (DTC) genetics kit. But how accurate are these disease risk estimates? How robust is the information that goes into calculating them? In a previous post I focused on how odds ratios (the ratio of the odds of disease if allele A is carried as opposed to allele B) can vary across different populations, environments and age groups and, as a consequence, affect disease risk estimates.  It turns out that even if we forget about these concerns for a moment, getting an accurate estimate of disease risk is far from straightforward. One of the primary challenges is deciding which disease loci to include in the risk prediction and in this post I will investigate the effect this decision can have on risk estimates.

To help me in my quest, I will use ulcerative colitis (UC) as an example throughout the post, estimating Genomes Unzipped members’ risk for the disease as I go. Ulcerative colitis is one of two common forms of autoimmune infllammatory bowel disease and I have selected it not on the basis of any special properties (either genetic or biological) but because I am familiar with the genetics of the disease having worked on it extensively.

The table below gives our ulcerative colitis risks according to 23andMe. The numbers in the table represent the percentage of people 23andMe would expect to suffer from UC given our genotype data (after taking our sex and ethnicity into account). The colours highlight individuals who fall into 23andMe’s “increased risk” (red) or “decreased risk” (blue) categories based on comparisons with the average risk (males: 0.77%; females 0.51%). As far as I am aware none of us actually do suffer from UC.
Continue reading ‘At odds with disease risk estimates’

Analysing your own genome, bloggers respond to the FDA and more reporting on bogus GWAS results

Razib Khan, more known for his detailed low-downs of population biology and history, has written an important post on Gene Expression, explaining in careful detail exactly how to run some simple population genetic analysis on public genomes, as well as on your own personal genomics data. The outcome of the tutorial is an ADMIXTURE plot (like the one to the left), showing what proportion of your genome comes from different ancestral populations. This sort of analysis is not difficult, but it can often be hard to know how to start, so Razib’s post gives a good landing point for people who want to dig deaper into their own genomes.

This tutorial also ties in to some political ideas that Razib has been talking about since the recent call to allow access to genomic information only via prescription. If you are worried about losing access to your genome, one option is to ensure that you do not require companies to generate and interpret your genome. As sequencing, genotyping and computing prices fall, DIY genetics becomes more and more plausible. Learn to discover things about your own genome, and no-one will be able to take that away from you. [LJ]

Continue reading ‘Analysing your own genome, bloggers respond to the FDA and more reporting on bogus GWAS results’

From GWAS to pathways, the consequences of DTC genetics and screening by sequencing

A paper out in PLoS Genetics this week takes a step towards using genome-wide association data to reconstruct functional pathways. Using protein-protein interaction data and tissue-specific expression data, the authors reconstruct biochemical pathways that underlie various diseases, by looking for variants that interact with genes in GWAS regions. These networks can then tell us about what systems are disrupted by GWAS variants as a whole, as well as identifying potential drug targets. The figure to the right shows the network constructed for Crohn’s disease; large colored circles are genes in GWAS loci, small grey circles are other genes in the network they constructed. As an interesting side note, the GWAS variants were taken from a 2008 study; since then, we have published a new meta-analysis, which implicated a lot of new regions. 10 genes in these regions, marked as small red circles on the figure, were also in the disease network. [LJ]

23andMe customers will be interested in a neat little FireFox plug-in that allows them to view their own genotypes for any 23andMe SNP mentioned on a web page. You can download the plug-in here (you’ll need to have an up-to-date version of FireFox), and I have a brief review of the tool here. [DM]
Continue reading ‘From GWAS to pathways, the consequences of DTC genetics and screening by sequencing’

Digging deeper into my disease risk

When Daniel first asked me if I wanted to be involved in Genomes Unzipped, I was one of the more hesitant participants.  I weighed up the pros and cons, but in the end what sold me was that after almost a decade of curiosity I finally had the opportunity to find out my genotype for the hereditary haemochromatosis (HH) variants in the gene HFE.  But things didn’t unfold quite how I’d expected, and I’m still left with some unanswered questions about HH in my family.

Continue reading ‘Digging deeper into my disease risk’

Guest post: Barbara Prainsack on public attitudes to DTC genetic testing

Barbara Prainsack is senior author on a paper published last week exploring public attitudes to direct-to-consumer genetic testing. She kindly agreed to summarise the key findings of the paper for our readers.

Much has changed since the first personal genome testing (PGT) companies three launched years ago. Vivid discussions are taking place about the ethical and societal dimensions of especially the direct-to-consumer sector of PGT, and debates continue on how to regulate the field: Advisory commissions in many countries are issuing recommendations, and regulators have stepped in. In the meantime, Harvard’s Personal Genome Project (PGP) has reached over 1,000 participants, and PGT companies have dropped prices considerably and later raised them again. Of the three PGT companies (23andMe, deCODEme, Navigenics) which launched in autumn 2007, only one (23andMe) continues to sell their tests solely DTC (Navigenics offer their tests through doctors, and deCODEme do both), but numerous other companies have joined the DTC market. This shows that there is clearly an ongoing need for raising awareness and facilitating debates about personal genomics.

The launch of Genomes Unzipped (GNZ) last June, and to an even greater extent, the unzipping of the genome data of its core members, mark important steps on that road. One of the largest achievements of GNZ so far is that it has pushed the debate beyond hypothethical scenarios but enables a discussion of an actual scenario of real people publicly sharing their PGT results.

We hope that with findings from a survey published last week we can also make a small contribution to the debate. Early in 2008, our group at the Department of Twin Research and Genetic Epidemiology, and the Centre for Biomedicine & Society at King’s College London, started wondering what the potential market for such tests would be, for what reasons people would take the test, and what they would do with the results. In autumn 2008, we sent out questionnaires about PGT to 6,510 volunteers, aged 17-91, in the TwinsUK registry. 4,050 people responded to the survey, which to the best of our knowing makes ours the largest survey of public understandings of PGT so far.

Continue reading ‘Guest post: Barbara Prainsack on public attitudes to DTC genetic testing’


Page optimized by WP Minify WordPress Plugin